Special Sessions Topics

Thank you to all who submitted a Special Session application for IALCCE 2025! Below are the successful submissions which will be featured in the program.

For Individual Abstract submissions to be included in the below, please submit your Abstract via the button

  • 法比奥-比翁迪尼 1、亚历山德拉-马里尼 2

    1.意大利米兰理工大学土木与环境工程系

    2.意大利贝加莫,贝加莫大学工程与应用科学系

    根据《仙台框架》和可持续发展目标,可持续性包括安全和抵御自然和人为灾害 的能力,气候变化导致的老化和结构退化会加剧这些灾害的潜在影响,以及在建筑物、 桥梁和其他基础设施的整个生命周期内减少对环境、经济和社会的影响。为了解决这些问题,结构工程学正在经历一场范式转变和深刻转型,向以生命周期为导向的方法转变,通过结合多种性能要求,如生态效益、耐久性、安全性、可靠性、坚固性、功能性和弹性,促进可持续结构和基础设施系统的设计、维护和运营。因此,需要采取整体方法,协同补充典型的风险管理方面和可持续性要求。

    本次特别会议旨在满足这些需求,并为可持续结构和基础设施系统的生命周期设计和评估做出贡献,欢迎大家根据以下目标献计献策:

    - 通过实施将生态效益和生命周期与安全性、可靠性、坚固性、功能性和复原力相结 合的可持续性理念,鼓励减少排放和实现建筑遗产的绿色转型,以促进可持续和公 平的经济、社会和环境发展;

    - 促进结构工程在可持续性实施过程中发挥核心作用;

    - 拓宽建筑环境设计和评估的视野,考虑整个生命周期的结构性能和影响,采用多尺度方法,从单个结构到城市和基础设施系统的尺度;

    - 提高技术、社会和政治意识,认识到需要采用生命周期方法来实现有效的可持 续性,鼓励在专业实践中加以应用,并在监管框架中加以实施。

    由 ReLUIS WP13 结构和基础设施系统生命周期可持续性研究项目 (https://www.reluis.it/en).ReLUIS 项目由意大利民防部 (https://www.protezionecivile.gov.it/en).

  • Dominika Bysiec 1、Tomasz Maleska 1、Paulina Obara 2

    1.波兰奥波莱理工大学

    2.波兰凯尔采理工大学

    土木工程中使用的轻质结构在世界各地的应用越来越广泛。轻质结构系统的不断发展使结构能够承受比自身重量大得多的荷载。轻质结构是一种土木工程物体,它以相对较少的建筑材料和极高的设计参数区别于迄今为止建造的类似结构,例如:无中间支撑的大跨度屋顶或桥梁,相当高的建筑物、塔楼或桅杆,以及极大的有用表面或建筑物、水箱或水库的自由体积。以下所有主题均可包括在内:空间网格结构、板壳结构、穹顶和膜结构、高层建筑、塔楼、水库、桥梁以及薄壁结构、拉伸结构、缆索结构和气动结构。与传统结构截面相比,采用结构优化方案以获得结构性能更佳的高效结构形式、承载能力更强的结构截面的创新结构设计方法值得介绍。以上定义的任何材料和结构都可以讨论。因此,本次特别会议涵盖了所有类型轻质结构的分析、评估、耐久性和修复,并特别强调了此类结构的生命周期设计、评估、维护和管理。会议还欢迎对各种荷载(静态、动态)下的轻质结构进行实验和数值分析,以及介绍创新的建造和翻新方法。 因此,本次特别会议是当前轻质结构工程生命周期趋势的一部分。

  • Arnold Yuan 1, Roderick Zhang 1, Constantine Angyridis 1

    1. Toronto Metropolitan University, Toronto, ON, Canada

    Determining a proper level of service and the corresponding capital budget level is a critical question in lifecycle infrastructure management. Many organizations relied on a lousy benchmarking approach, i.e., by looking over other organizations for a similar investment level. This apparently is not rational. This paper aims to present a macroeconomic analysis for determining the most efficient level of reinvestment on infrastructure renewals including climate mitigation and climate adaptation initiatives. Using a neoclassical modelling framework consisting of a representative household, a representative firm, and a government, the analysis investigates the effects of different investment levels on lifetime household utility. The impacts of investment on climate mitigation and climate adaptation programs on economic production and societal welfare are also investigated. What is particularly unique and novel of the study is that the analysis is built upon solid engineering analysis through asset-level deterioration modelling and inventory-level asset management optimization.

  • Francesco Cavalieri 1, Davide Bellotti 1, Bruno Dal Lago 2

    1. Eucentre Foundation, Pavia, Italy

    2. University of Insubria, Varese, Italy

    The construction sector is responsible for a large portion of the global greenhouse gas (GHG) emissions, as well as for a number of additional significant environmental and economic impacts. The sustainability principles emerged in the recent years aim to minimise the impacts of buildings’ life cycle phases through the use of operative tools, including life cycle assessment (LCA) and life cycle cost analysis (LCCA) procedures. New principles and design targets are currently being developed to achieve objectives such as repairability, durability, flexibility and adaptability, deconstruction, the use of recycled, local and durable materials, as well as the concept of incremental rehabilitation and the requirement to carry out outside-only retrofitting operations.

    The operators of the reinforced concrete precast sector are called to apply such principles in the design, assessment and renovation of this construction type. As an example, several innovative solutions have been proposed especially in the design and rehabilitation of precast industrial buildings; however, a thorough investigation of the benefits of these solutions to the structures’ life cycle performance is still missing. To help close gaps like this, this Special Session welcomes contributions from researchers, practitioners and manufacturers focussing on sustainability issues in the field of precast constructions. Topics of interest include, but are not limited to, the following:

    • Qualitative or quantitative life cycle environmental and economic assessment;

    • Comparative evaluations of traditional and innovative technological solutions for the design and rehabilitation of precast buildings;

    • Optimal seismic/energy integrated retrofitting of existing single-storey or multi-storey precast buildings;

    • Use of innovative and more sustainable materials, such as recycled aggregates for precast concrete elements;

    • Disassembly and reuse of precast concrete elements;

    • Experimental campaigns related to the topics above.

  • Yue Pan 1, Yiqing Dong 2, Dalei Wang 1

    1. Tongji University, Shanghai

    2. Nanyang Technological University, Singapore

    说明

    The integration of artificial intelligence (AI) and robotics in Bridge Engineering is revolutionizing the field, offering innovative solutions for design, construction, monitoring, and maintenance. This special session aims to explore the cutting-edge advancements and interdisciplinary research at the intersection of AI, robotics, and Bridge Engineering. The goal is to provide a platform for experts, researchers, and practitioners to discuss recent developments, share insights, and identify future research directions.

    The special session will cover a wide range of topics, reflecting the diverse applications and unique challenges of employing AI and robotics in bridge engineering.

    潜在贡献的主题包括但不限于

    • AI-driven structural health monitoring and damage detection

    • Robotics for bridge inspection and maintenance

    • Machine learning algorithms for predictive maintenance

    • Advanced simulation and modeling techniques using AI

    • Automated design optimization of bridge structures

    • AI applications in construction management and safety

    • Integration of AI with IoT for real-time bridge monitoring

    • Case studies and practical implementations of AI and robotics in bridge projects

  • 菲利波-朱斯托齐 1、杰拉尔多-弗林施 2

    1.澳大利亚维多利亚墨尔本皇家墨尔本理工大学

    2.美国弗吉尼亚州布莱克斯堡弗吉尼亚理工大学

     

    本次会议以公路和机场为重点,探讨了减少交通基础设施温室气体排放的迫切需要。鉴于交通基础设施的建设、维护和报废处理对环境的重大影响,整合生命周期评估(LCA)原则和环境产品声明(EPD)对于实现净零排放目标至关重要。

    目前正在几个关键领域开展研究,以应对这些挑战。绿色公共采购(GPP)鼓励在公共项目中使用环保材料和技术,旨在从一开始就降低碳足迹。此外,低碳材料(如再生混凝土、沥青和创新复合材料)的开发和应用正在减少与施工和维护活动相关的排放。

    道路和机场的低碳设计和维护战略也至关重要。这些策略包括优化设计流程,最大限度地减少资源消耗和排放;采用可再生能源;实施高效的维护方法,延长基础设施的使用寿命,同时减少对环境的影响。

    会议将涵盖广泛的主题,从创新材料和建筑技术的生命周期评估到政策框架和成功应用案例研究。会议将深入探讨开展生命周期评估的方法,目的是编制环境绩效报告(EPD),强调其在决策和提高环境绩效报告透明度方面的作用。还将探讨这些可持续做法对经济和监管的影响,同时考虑短期和长期的效益和挑战。

    通过汇集专家、政策制定者和行业从业者,本次会议旨在促进知识交流与合作,推动可持续交通基础设施的发展。与会者将全面了解如何在道路和机场的设计和维护中有效整合生命周期评估原则和环境影响指标,推动实现净零排放。

  • Yaohan Li 1、Junlin Heng 2、You Dong 3、Dan M Frangopol 4

    1.中国香港,香港城市大学建筑与质量管理系

    2.四川大学土木工程系,中国成都

    3.香港理工大学土木与环境工程系,中国香港

    4.美国伯利恒利哈伊大学土木与环境工程系

    在气候变化的影响下,全球极端天气事件的频率和强度不断上升。与此同时,气温升高和二氧化碳浓度升高正在加速民用基础设施的老化和退化,从而增加了结构失效的风险。这些影响对系统在整个使用寿命期间的性能、安全性和可靠性构成了重大威胁。因此,迫切需要采用数字孪生等先进技术的适应和减缓战略,以增强私人、公共和社区层面民用基础设施的气候适应能力。特别是,必须将这些战略和新方法与生命周期相结合。数字孪生与生命周期管理方法相结合,可通过协同模型和数据来模拟、监测、评估、预测和优化系统在不断变化的环境中的长期性能,从而提供卓越的能力。本次特别会议旨在汇聚研究人员,交流最新知识,促进合作,利用数字孪生与传统生命周期管理相结合,提高民用基础设施的气候适应能力。我们的讨论侧重于但不限于以下领域:(1) 通过预测模型对老化和气候变化下的生命周期性能进行评估;(2) 支持老化基础设施交互式结构数字孪生的新型框架、方法和硬件;(3) 利用数字孪生进行生命周期评估,分析极端事件下的脆弱性、风险和复原力;(4) 通过虚拟现实(VR)、增强现实(AR)和混合现实(MR)将数字孪生与元宇宙集成; (5) 先进的不确定性量化和建模;以及 (6) 与气候适应、减缓和决策相关的生命周期管理。

  • zhibin Lin 1, Ji Dang 2, Fujian Tang 3, Hong Pan 4

    1.林志斌,美国法戈北达科他州立大学副教授

    2.日本埼玉县埼玉大学

    3.中国大连理工大学

    4.美国北达科他州法戈市北达科他州立大学

    说明

    民用基础设施面临着各种压力--老化效应、不同的运行条件和环境影响。因此,了解其服役期间的健康状况并及时提供有条件的评估至关重要。气候变化加剧了基础设施的退化,凸显了及时进行健康评估的紧迫性。传感技术和数据挖掘领域的最新进展推动了民用基础设施结构健康监测(SHM)领域的突破,特别是新兴的人工智能(AI)和机器学习方法进一步增强了数据驱动和人工智能丰富的 SHM 功能,努力实现结构的完整性、耐久性和复原力。

    本次特别会议旨在汇聚 SHM 领域的顶尖专家,共同探讨该领域的最新进展。我们的目标是创建一个涵盖各种主题的论坛,同时强调形成我们对结构安全性和完整性理解的独特性。 

    潜在贡献的主题包括但不限于

    • 结构传感技术和传感器的进步

    • 基于振动的 SHM

    • 无损检测和检验,以及基于振动的 SHM

    • 信号处理、损坏检测和条件评估

    • 结构监测、机器人技术和计算机视觉

    • SHM 在工程领域的广泛应用

    • SHM 中的人工智能、数据驱动和数字孪生方法

  • Mojtaba Dr Mahmoodian 1, Sujeeva Prof Setunge 1

    1.澳大利亚维多利亚墨尔本皇家墨尔本理工大学

    With the advancements in digital technologies infrastructure engineering industry is moving towards more sustainable construction and operation. Wireless sensor technology, Smart and/or self-sensing materials, Internet of Things, 3D visualisation, Artificial Intelligence, NDT, drone technology and image processing are used in whole life cycle of infrastructure from planning and design to construction and maintenance and eventually decomposition.  Cost and risk reduction, safety and reliability improvement, failure prediction, minimising environmental impact, optimum maintenance management and extending the remaining lifetime of civil infrastructure are potential consequences of using such intelligent technologies in infrastructure industry.

    This special session invites research works with the focus on existing challenges in adaptation and integration of these technologies in the industry. The experiences of developing such technologies and their application on various infrastructure (such as bridges, tunnels, dams, energy infrastructure, pipelines, coastal and marine infrastructure, etc) is of interest of this special session. The latest theoretical, practical advances and case studies on intelligent planning, design, construction, monitoring and maintenance of civil infrastructure are welcome to be presented in this special session.

     

  • DHANADA KANTA MISHRA 1, Garfield GUAN 2

    1. RaSpect AI, Hong Kong, SELECT STATE, Hong Kong SAR

    2.ConHubForm 建筑技术有限公司,香港,香港特别行政区

    利用人工智能对已建基础设施进行自主检测和生命周期维护管理

    关于召开特别会议的建议

    随着基础设施系统的老化和复杂性的增加,人们越来越需要创新的方法来提高基础设施管理的效率、准确性和成本效益。本特别会议旨在探讨如何利用人工智能(AI)彻底改变基础设施生命周期管理领域。

    会议将重点讨论人工智能驱动的基础设施检测和维护技术的最新进展,涵盖以下关键领域:

    1. 基于人工智能的检测和缺陷探测:利用计算机视觉和机器学习进行自动视觉检测,整合传感器数据分析以加强状态评估,以及应对数据可用性和整合方面的挑战。

    2. 预测性维护和决策支持:开发人工智能驱动的老化预测模型,设计优化维护规划的决策支持框架,探索人工智能与数字双胞胎等新兴技术的整合。

    3. 自主检查和维护机器人技术:展示无人驾驶飞行器和地面机器人系统在自主基础设施任务中的应用,并探讨部署这些系统在技术、操作和监管方面的挑战。

    4. 跨学科视角与治理:结合计算机科学、网络安全和政策制定等领域的见解,探讨人工智能驱动的基础设施管理的广泛影响,并讨论负责任的部署所需的伦理、法律和治理框架。

    本特别会议汇集了研究人员、从业人员和行业专家,旨在促进跨学科合作、知识共享和创新解决方案的开发。会议将作为一个平台,确定并解决关键挑战,展示实际案例研究,并为推动将人工智能有效整合到基础设施生命周期管理中的指导方针和标准做出贡献。我们相信,本次会议将为大会增添宝贵的内容,对人工智能在优化已建基础设施中的作用进行前瞻性探索。

  • 野村康稔 1、古田仁 2、纳卡蒂-卡特巴斯 3、川村圭 4、江本久雄 5

    1.立命馆大学,日本东京都草津市

    2.大阪都立大学,日本大阪

    3.佛罗里达州奥兰多市中佛罗里达大学

    4.山口大学,日本山口县宇部市

    5.鸟取大学,日本鸟取县

    近年来,高效、准确地评估结构完整性变得越来越重要和紧迫。为了减轻维护工作量和降低维护成本,人们开始关注利用人工智能和数据科学进行智能维护。智能维护涵盖一系列无损检测方法,包括超声波、电磁、激光和雷达技术,以及先进的图像处理技术。

    在本环节中,我们将探讨人工智能、智能系统和数据科学在基础设施检测、监控和维护等挑战中的适用性和实际应用。本次会议旨在全面介绍该领域的最新进展和实际应用。我们邀请大家就各种主题展开讨论,包括但不限于

    • 用于预测性维护和异常检测的机器学习和深度学习技术

    • 概率评估和决策的贝叶斯方法

    • 结构健康监测(SHM)系统及其与智能技术的集成

    • 开发和应用智能传感器和物联网设备进行实时监测

    • 数据融合和先进分析技术用于加强维护战略

    • 成功展示人工智能驱动的维护解决方案的案例研究

    • 创新的无损检测方法及其有效性

    • 将人工智能和数据科学应用于基础设施的挑战和未来方向

    本次会议将为研究人员、从业人员和行业专家提供一个平台,分享他们的见解,讨论面临的挑战,并介绍旨在通过智能维护技术提高基础设施寿命和可靠性的前沿解决方案。

  • Laura Ierimonti 1、Simon Laflamme 2、Ayan Sadhu 3、Ilaria Venanzi 1

    1.佩鲁贾大学,意大利佩鲁贾

    2.美国爱荷华州艾姆斯爱荷华州立大学

    3.加拿大安大略省伦敦西部大学

    最近,世界各地发生了多起涉及桥梁、大坝和其他重要基础设施的灾难性事件,导致重大损失、中断,甚至生命损失。对这些结构的评估和管理程序往往已经过时,无法满足当前的设计和维护要求,而且必须在短时间内利用有限的财力和人力资源来保证及时有效地采取行动。

    因此,迫切需要开发适当的工具来支持决策过程,以提高基础设施的安全性和复原力。有效的资源分配对于制定优化基础设施管理规划、风险缓解战略和恢复行动的有效方法至关重要。从这个意义上说,结构健康监测(SHM)可以为风险评估和决策程序提供支持。

    传统的设计和管理方法被以生命周期分析为基础的方法所取代的情况并不少见,因为生命周期分析可以考虑系统生命周期内更广泛的性能指标。寿命周期分析可以考虑设计中的不确定性,考虑多种并发或交互危害的影响,并解决潜在的恶化和渐进损坏问题。因此,在这些生命周期分析程序中集成 SHM 系统有助于量化 SHM 的效益。例如,可以利用这种先进的模型来了解如何利用 SHM 系统来减少多种危害条件下的结构状况不确定性。

    本次特别会议的重点是基于 SHM 的老化桥梁风险分析方法,以及从生命周期角度进行优化管理和决策的方法。因此,本次特别会议将促进从事 SHM、桥梁风险评估和管理的顾问和研究人员之间的对话,汇集技术进步以及案例研究和现场经验。

  • Yiannis Xenidis 1、Elisabete R. Teixeira 2

    1.希腊塞萨洛尼基亚里士多德大学

    2.ISISE-UM 结构工程可持续性与创新研究所--葡萄牙吉马良斯米尼奥大学

    欧盟的生态系统正在令人担忧地退化,从而增加了自然灾害的影响,并阻碍了有效实现碳捕获和碳存储的目标。欧盟理事会最近通过的《自然恢复法》是第一部全欧洲范围内的综合性法律,旨在恢复生态系统、栖息地和物种,使具有生物多样性和复原力的自然得以长期、持续地恢复,促进实现欧盟的气候减缓和气候适应目标,并履行国际承诺。

    土木工程在这方面可以发挥新的作用,因为这是有史以来第一次需要反向实施土木工程:与其说人类生活需要适应自然环境,不如说现在需要恢复自然以保障人类生活。虽然生命周期土木工程已经讨论、推广和实施了多年,但结果显然并不令人满意,因此需要立即采取行动,或许还需要转变土木工程研究、教育和实践的模式。

    本次特别会议的范围是在全球范围内讨论如何更有效地利用土木工程的生命周期来恢复自然。因此,欢迎就以下特定主题的研究、教育和实践等广泛领域投稿:

    • 自然灾害和气候变化对土木工程的影响。

    • 基础设施整个生命周期的碳管理。

    • 调整城市规划和城市计划的执行,为大自然的长期保护服务。

    • 土木工程设计的弹性、拆卸、预制、全寿命护理和结构寿命延长。

    • 地方当局处理生命周期工程的能力以及相应的抗灾措施和风险管理标准。

    • 建筑环境系统中的社会技术系统和人为因素。

    • 利用数字工具有效开展生命周期土木工程。

    • 关于土木工程恢复自然的专业和学术培训。

  • Jaap Bakker 1、Han Roebers 2

    1.荷兰乌特勒支 Rijkswaterstaat 市

    2.北荷兰省,哈勒姆,北荷兰,荷兰

    对于任何参与设计、建造、维护和运营民用建筑和网络的人来说,生命周期的思考和行动都变得越来越重要。在经历了上个世纪战后工业化时期各种大型建设项目的巨大发展之后,民用资产的老化已成为一个重大问题。虽然社会主要依赖于这些资产,但随着时间的推移和社会需求的变化,这些资产逐渐不堪重负,在技术和功能上都已过时。所需的巨大投资既是经济挑战,也是环境负担。人力和物力资源的稀缺,以及一些民用建筑的文化价值,都加剧了这一挑战。生命周期管理(LCM)解决了民用建筑生命周期内性能、风险和成本之间复杂而动态的相互作用。生命周期思维和行动对于确保民用建筑满足未来需求、抵御预期和意外事件以及长期的成本效益至关重要。

    本特别会议旨在讨论支持生命周期决策的方法和技术。这可能包括未来风险的量化方法、未来性能的量化方法和生命周期内未来成本的量化方法。但这也可能包括将管理这些参数所需的决策参数结合起来的方法,以及支持基于生命周期管理因素组合的整体决策支持。

  • Li LAI 1, You DONG 1

    1. The Hong Kong Polytechnic University, China, Hong Kong, Hong Kong

    The long-term performance deterioration of bridges reduces their load-bearing capacity, leading to accidents, making maintenance essential for safe operation. However, government reports from the USA and China indicate significant investment shortfalls in bridge maintenance, each exceeding hundreds of billion. Balancing structural risk and minimizing maintenance costs is a major challenge. Traditional bridge management relies on expert judgment based on current inspection reports, which fails to account for historical data and future deterioration. To address this, a more intelligent agent is needed to optimize inspection timing, preventive maintenance, and rehabilitation using infrastructural information. This study employs the Actor-Critic algorithm from deep reinforcement learning to process structural data and generate maintenance actions. Training the intelligent agent requires experience in various scenarios to provide optimal maintenance actions for each situation. This involves creating a virtual environment based on digital twins’ technology. The agent's training leverages the Proximal Policy Optimization (PPO) method to interact with the virtual environment and learn effective management policies. A practical application of this approach is demonstrated through a comparative study using an actual steel pipe arch bridge. The study benchmarks the performance of the intelligent agent against traditional maintenance strategies. The findings reveal that both policies can ensure the safety of the bridge, but the intelligent agent can reduce inspection costs by 75% and rehabilitation costs by 15%. The major functionalities of the digital twins are displayed in the accompanying video: https://www.youtube.com/watch?v=0PGvA9ELwj0

  • Radhika Pajgade 1 , Ajmal Babu Mahasrankintakam 1 , Manish Kumar Jha 1 , Siddhartha Ghosh 1 , Meera Raghunandan 1

    1. Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India

    This study presents a detailed comparison of life cycle costs (LCC) of short-span road bridges made with prestressed concrete girders and steel girders. The research aims to provide a comprehensive understanding of the LCC implications of using different materials for bridge construction, considering various factors such as construction costs, maintenance and repair costs, environmental impacts, social costs, user costs, and recycling/dumping costs. A new life cycle cost Assessment (LCCA) framework is developed to accommodate country-specific cost data and facilitate comparisons across different bridge designs and locations. The study focuses on the comparative LCCA of standard PSC-girder RC-deck and steel-girder RC-deck bridges. The results show that the LCC of steel-girder bridges can be significantly lower than those made with prestressed concrete girders, depending on the target service life and bridge design parameters. This research contributes to a better understanding of the economic, environmental, and social implications of using different materials for short-span bridge construction and provides recommendations for policymakers, designers, and builders to optimize LCC decisions.

  • Ajmal Babu Mahasrankintakam 1 , Radhika Pajgade 1 , Siddhartha Ghosh 1 , Meera Raghunandan 1

    1. Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India

    This paper presents the development and application of a life cycle cost assessment (LCCA) tool specifically designed for short span bridges. The LCCA tool integrates various costs associated with bridge construction, maintenance, repair, and replacement over its entire lifespan, considering factors such as materials, inflation, environmental impacts, and traffic data. The tool provides valuable insights into the long-term economic benefits of investing in more durable bridge designs and cost-effective maintenance strategies. Examples are presented to demonstrate the practical application of the LCCA tool, its ease of use and adaptability to user-specific databases. The LCCA tools makes it easy to compare different design alternatives in terms of their economic, environmental and social impacts, and helps us choose the most sustainable option.  In future, the tool can be integrated with an optimal structural design software for short span steel bridges, enhancing decision-making processes in bridge design and maintenance.

  • Blaz Zoubek 1 , Jure Zizmond 1 , Tatjana Isakovic 2

    1. Chair of Structural and Earthquake Engineering, University of Ljubljana, Faculty of Civil and Geodetic Engineering, Ljubljana, Slovenia

    2. SPEKTRAL d.o.o., Ljubljana, Slovenia

    This study introduces a secondary backup system designed to protect cladding panels in RC precast buildings from seismic activity. The system features specialized anchoring components and a rope restrainer, which only activates if the primary connections between the main structure and the panel fail. This failure triggers significant impact forces on the restrainer and anchoring elements. To design these components effectively, a straightforward yet accurate method for estimating impact forces is essential. Consequently, a user-friendly formula was developed for this purpose. An extensive parametric study, utilizing response history analysis (RHA), was conducted to examine the impact of various parameters on the forces experienced by the restrainers. The study’s findings were used to validate the proposed analytical formula. Despite its simplicity, the formula demonstrated good accuracy and can be applied to the design of short restrainers for protecting cladding panels in RC precast buildings from earthquake effects. This research is particularly relevant for the retrofitting of existing single-storey or multi-storey precast buildings with concrete claddings.